Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 1(12): e312, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34941021

RESUMO

Guinea pigs have been used as a model for Mycobacterium tuberculosis infection for many years and have been more recently adopted as a model for testing new tuberculosis (TB) vaccines. From the time of Robert Koch, who used guinea pigs to test theories about the newly discovered pathogen, the guinea pig has modeled active human infections, as it is susceptible to infection with low numbers of organisms. This article describes the modern use of the guinea pig to examine the pathology of the disease and the protocols used to examine specific outcomes associated with aerosol infection with virulent M. tuberculosis. The guinea pig is used extensively to investigate the ability of new TB vaccines to reduce TB disease, and two models have been employed. The first is the long-term disease model, in which vaccinated guinea pigs are monitored for disease after infection, and the second is the short-term assessment of mycobacterial burden model, which can determine the ability of a vaccine to reduce organism burden. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of virulent Mycobacterium tuberculosis seed stocks for animal infections Basic Protocol 2: Preparation of virulent Mycobacterium tuberculosis working stocks for animal infections Basic Protocol 3: Preparation of M. tuberculosis for aerosol infection of guinea pigs Basic Protocol 4: Injection of guinea pigs Basic Protocol 5: Blood collection from live guinea pigs Basic Protocol 6: Guinea pig euthanasia.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Modelos Animais de Doenças , Cobaias , Tuberculose/prevenção & controle
2.
Sci Rep ; 11(1): 12417, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127755

RESUMO

A single intradermal vaccination with an antibiotic-less version of BCGΔBCG1419c given to guinea pigs conferred a significant improvement in outcome following a low dose aerosol exposure to M. tuberculosis compared to that provided by a single dose of BCG Pasteur. BCGΔBCG1419c was more attenuated than BCG in murine macrophages, athymic, BALB/c, and C57BL/6 mice. In guinea pigs, BCGΔBCG1419c was at least as attenuated as BCG and induced similar dermal reactivity to that of BCG. Vaccination of guinea pigs with BCGΔBCG1419c resulted in increased anti-PPD IgG compared with those receiving BCG. Guinea pigs vaccinated with BCGΔBCG1419c showed a significant reduction of M. tuberculosis replication in lungs and spleens compared with BCG, as well as a significant reduction of pulmonary and extrapulmonary tuberculosis (TB) pathology measured using pathology scores recorded at necropsy. Evaluation of cytokines produced in lungs of infected guinea pigs showed that BCGΔBCG1419c significantly reduced TNF-α and IL-17 compared with BCG-vaccinated animals, with no changes in IL-10. This work demonstrates a significantly improved protection against pulmonary and extrapulmonary TB provided by BCGΔBCG1419c in susceptible guinea pigs together with an increased safety compared with BCG in several models. These results support the continued development of BCGΔBCG1419c as an effective vaccine for TB.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/prevenção & controle , Vacinação/métodos , Animais , Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Imunogenicidade da Vacina , Injeções Intradérmicas , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Mycobacterium tuberculosis/imunologia , Células RAW 264.7 , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia
3.
Tuberculosis (Edinb) ; 123: 101949, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32741537

RESUMO

Toll-Like Receptor (TLR) 9 stimulation is required for induction of potent immune responses against pathogen invasion. The use of unmethylated CpG as adjuvants in vaccines provides an excellent means of stimulating adaptive immunity. Our data demonstrate that CpG-C provided prolonged immune responses in the mouse model of tuberculosis when formulated with liposomes and the Mycobacterium tuberculosis antigen ESAT-6. A reduction in the mycobacterial burden was best achieved when administered as an intranasal vaccine and was dependent on type I interferon (IFN). There was a significant difference between CpG-C inoculated wild type and IFN-αR1-/- mice, indicating that type I IFN plays a role in the immune response following CpG-C inoculation. Further analysis showed that early NK cell presence was not an absolute requirement, although elevated IFN-γ levels were detected in the lungs of mice within 48 h. The reduction in mycobacterial burden was MyD88-independent as CpG-C inoculated MyD88-/- mice showed comparable mycobacterial burdens to wild type mice with no detriment due to the lack of MyD88. Together our data show that pulmonary stimulation of TLR9 bearing antigen presenting cells resulted in the induction of protective immunity against M. tuberculosis infection that was dependent on type I IFN signaling.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Imunidade nas Mucosas/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oligodesoxirribonucleotídeos/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Adjuvantes Imunológicos/efeitos adversos , Administração Intranasal , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Interferon gama/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Sprays Nasais , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Transdução de Sinais , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia
4.
Front Immunol ; 11: 1202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625209

RESUMO

The live attenuated Mycobacterium bovis strain, Bacille Calmette Guérin (BCG) is a potent innate immune stimulator. In the C57BL/6 mouse model of tuberculosis, BCG vaccination leads to a significant reduction of Mycobacterium tuberculosis burden after aerogenic infection. Our studies indicated that BCG induced protection against pulmonary tuberculosis was independent of T cells and present as early as 7 days after vaccination. This protection showed longevity, as it did not wane when conventional T cell and TNF-α deficient mice were infected 30 days post-vaccination. As BCG induced mycobacterial killing after 7 days, this study investigated the contributions of the innate immune system after BCG vaccination to better understand mechanisms required for mycobacterial killing. Subcutaneous BCG inoculation resulted in significant CD11b+F4/80+ monocyte subset recruitment into the lungs within 7 days. Further studies revealed that killing of mycobacteria was dependent on the viability of BCG, because irradiated BCG did not have the same effect. Although others have identified BCG as a facilitator of trained innate immunity, we found that BCG reduced the mycobacterial burden in the absence of mechanisms required for trained innate immunity, highlighting a role for macrophages and neutrophils for vaccine induced killing of M. tuberculosis.


Assuntos
Vacina BCG/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
5.
Front Microbiol ; 9: 1281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946316

RESUMO

Mycobacterium tuberculosis (M. tuberculosis), the causative agent of human tuberculosis (TB), is estimated to be harbored by up to 2 billion people in a latent TB infection (LTBI) state. The only TB vaccine approved for use in humans, BCG, does not confer protection against establishment of or reactivation from LTBI, so new vaccine candidates are needed to specifically address this need. Following the hypothesis that mycobacterial biofilms resemble aspects of LTBI, we modified BCG by deleting the BCG1419c gene to create the BCGΔBCG1419c vaccine strain. In this study, we compared cytokine profiles, bacterial burden, and lung lesions after immunization with BCG or BCGΔBCG1419c before and after 6 months of aerosol infection with M. tuberculosis H37Rv in the resistant C57BL/6 mouse model. Our results show that in infected mice, BCGΔBCG1419c significantly reduced lung lesions and IL-6 in comparison to the unmodified BCG strain, and was the only vaccine that decreased production of TNF-α and IL-10 compared to non-vaccinated mice, while vaccination with BCG or BCGΔBCG1419c significantly reduced IFN-γ production. Moreover, transcriptome profiling of BCGΔBCG1419c suggests that compared to BCG, it has decreased expression of genes involved in mycolic acids (MAs) metabolism, and antigenic chaperones, which might be involved in reduced pathology compared to BCG-vaccinated mice.

6.
Tuberculosis (Edinb) ; 106: 99-105, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28802412

RESUMO

With more than 9 million new infections and 1.5 million deaths claimed every year, tuberculosis remains one of the major scourges of humankind. The only vaccine available against this disease, the attenuated strain Mycobacterium bovis, BCG is effective against severe forms of the disease in infants, but scarcely effective in protecting adults from the pulmonary form of the disease, thus not stopping transmission. Consequently, the development of an effective anti-tuberculosis vaccine is a major goal for improving global health. The most common concept is that a more effective vaccine should include a first immunization with a live vaccine followed by the administration of an acellular boosting vaccine. In this approach, the live vaccine might be either BCG or a different, more efficient attenuated strain. Recently, we showed that a Mycobacterium tuberculosis mutant missing the gene encoding for the extracellular function sigma factor SigE, is strongly attenuated and is able to induce a more effective protection from M. tuberculosis infection compared to BCG in mice. We now further characterize the protective potential of this novel strain in the guinea pig model of tuberculosis. In the guinea pig, it had limited growth but induced a Th1 immune response and was able to significantly reduce the number of colony forming units as well as prolong survival. Taken together these data provide evidence for the use of the M. tuberculosis sigE mutant as the basis for further development as a vaccine against infection.


Assuntos
Proteínas de Bactérias/imunologia , Pulmão/imunologia , Mutação , Mycobacterium tuberculosis/imunologia , Fator sigma/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Animais , Proteínas de Bactérias/genética , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Cobaias , Interações Hospedeiro-Patógeno , Pulmão/metabolismo , Pulmão/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fator sigma/genética , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/microbiologia , Fatores de Tempo , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/microbiologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
7.
PLoS One ; 12(6): e0179996, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28650996

RESUMO

Tuberculosis remains one of the most difficult to control infectious diseases in the world. Many different factors contribute to the complexity of this disease. These include the ability of the host to control the infection which may directly relate to nutritional status, presence of co-morbidities and genetic predisposition. Pathogen factors, in particular the ability of different Mycobacterium tuberculosis strains to respond to the harsh environment of the host granuloma, which includes low oxygen and nutrient availability and the presence of damaging radical oxygen and nitrogen species, also play an important role in the success of different strains to cause disease. In this study we evaluated the impact of a naturally occurring 12 gene 15 Kb genomic deletion on the physiology and virulence of M. tuberculosis. The strains denominated ON-A WT (wild type) and ON-A NM (natural mutant) were isolated from a previously reported TB outbreak in an inner city under-housed population in Toronto, Canada. Here we subjected these isogenic strains to transcriptomic (via RNA-seq) and proteomic analyses and identified several gene clusters with differential expression in the natural mutant, including the DosR regulon and the molybdenum cofactor biosynthesis genes, both of which were found in lower abundance in the natural mutant. We also demonstrated lesser virulence of the natural mutant in the guinea pig animal model. Overall, our findings suggest that the ON-A natural mutant is less fit to cause disease, but nevertheless has the potential to cause extended transmission in at-risk populations.


Assuntos
Deleção de Genes , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Coenzimas/biossíntese , Coenzimas/genética , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Cobaias , Humanos , Metabolismo dos Lipídeos/genética , Metaloproteínas/biossíntese , Metaloproteínas/genética , Cofatores de Molibdênio , Família Multigênica , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Proteínas Quinases/genética , Proteômica , Pteridinas , Regulon , Tuberculose Pulmonar/microbiologia , Virulência/genética
8.
Vaccine ; 34(25): 2798-805, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27131285

RESUMO

The use of novel vaccine delivery systems allows for the manipulation of the adaptive immune systems through the use of molecular adjuvants that target specific innate pathways. Such strategies have been used extensively for vaccines against cancer and multiple pathogens such as Mycobacterium tuberculosis. In the current study we used heat killed non-pathogenic recombinant Saccharomyces cerevisiae expressing M. tuberculosis antigen Rv1886c (fbpB, mpt59, Ag85B) as a delivery system in conjunction with its ability to stimulate innate immunity to determine its ability to induce immunity. We established that the recombinant yeast induced activated antigen specific T cells are capable of reducing the mycobacterial burden. Inoculation of the recombinant yeast after vaccination with BCG resulted in a systemic alteration of the phenotype of the immune response although this was not reflected in an increase in the reduction of the mycobacterial burden. Taken together the data suggest that heat killed yeast can induce multiple cytokines required for induction of protective immunity and can function as a vehicle for delivery of M. tuberculosis antigens in a vaccine formulation. In addition, while it can enhance the effector memory response induced by BCG, it had little effect on central memory responses.


Assuntos
Aciltransferases/imunologia , Adjuvantes Imunológicos/administração & dosagem , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Saccharomyces cerevisiae/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Citocinas/imunologia , Feminino , Temperatura Alta , Imunização Secundária , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia
9.
Tuberculosis (Edinb) ; 92(1): 105-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21962569

RESUMO

The guinea pig model of tuberculosis is used extensively in different locations to assess the efficacy of novel tuberculosis vaccines during pre-clinical development. Two key assays are used to measure protection against virulent challenge: a 30 day post-infection assessment of mycobacterial burden and long-term post-infection survival and pathology analysis. To determine the consistency and robustness of the guinea pig model for testing vaccines, a comparative assessment between three sites that are currently involved in testing tuberculosis vaccines from external providers was performed. Each site was asked to test two "subunit" type vaccines in their routine animal model as if testing vaccines from a provider. All sites performed a 30 day study, and one site also performed a long-term survival/pathology study. Despite some differences in experimental approach between the sites, such as the origin of the Mycobacterium tuberculosis strain and the type of aerosol exposure device used to infect the animals and the source of the guinea pigs, the data obtained between sites were consistent in regard to the ability of each "vaccine" tested to reduce the mycobacterial burden. The observations also showed that there was good concurrence between the results of short-term and long-term studies. This validation exercise means that efficacy data can be compared between sites.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Cobaias , Camundongos , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia
10.
Infect Immun ; 77(11): 4837-46, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737892

RESUMO

The guinea pig model of tuberculosis is used extensively in assessing novel vaccines, since Mycobacterium bovis BCG vaccination effectively prolongs survival after low-dose aerosol infection with virulent M. tuberculosis. To better understand how BCG extends time to death after pulmonary infection with M. tuberculosis, we examined cytokine responses postvaccination and recruitment of activated T cells and cytokine response postinfection. At 10 weeks postvaccination, splenic gamma interferon (IFN-gamma) mRNA was significantly elevated compared to the levels at 5 weeks in ex vivo stimulation assays. At 15, 40, 60, and 120 days postinfection, T-cell activation (CD4+ CD62Llow and CD8+ CD62Llow) and mRNA expression of IFN-gamma, tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), IL-10, IL-12, and eomesodermin were assessed. Our data show that at day 40, BCG-vaccinated guinea pigs had significantly increased levels of IFN-gamma mRNA expression but decreased TNF-alpha mRNA expression in their lungs compared to the levels in nonvaccinated animals. At day 120, a time when nonvaccinated guinea pigs succumbed to infection, low levels of IFN-gamma mRNA were observed even though there were increasing levels of IL-1, IL-12, and IL-10, and the numbers of activated T cells did not differ from those in BCG-vaccinated animals. BCG vaccination conferred the advantage of recruiting greater numbers of CD4+ CD62Llow T cells at day 40, although the numbers of CD8+ CD62Llow T cells were not elevated compared to the numbers in nonvaccinated animals. Our data suggest that day 40 postinfection may be a pivotal time point in determining vaccine efficacy and prolonged survival and that BCG promotes the capacity of T cells in the lungs to respond to infection.


Assuntos
Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/terapia , Animais , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Citometria de Fluxo , Cobaias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Tuberculose/veterinária
11.
Infect Immun ; 74(11): 6135-44, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16982845

RESUMO

Recent studies have shown that matrix metalloproteinases (MMPs) are induced by Mycobacterium tuberculosis during pulmonary infection. Here, expression of MMP-9 during pulmonary M. tuberculosis infection was characterized to determine whether its production correlated with disease resistance in vivo and to determine what role, if any, MMP-9 might have in granuloma formation. Following aerosol infection with M. tuberculosis, dissemination of bacilli occurred earlier in the C57BL/6 resistant mouse strain than in the susceptible CBA/J strain, as was evident from an increased number of bacteria in the blood, spleen, and liver at day 14 after infection. In addition, early dissemination of the bacilli was associated with early induction of protective immunity as assessed from gamma interferon levels. Nonspecific blocking of MMPs in C57BL/6 mice early during infection reduced hematogenous spread of the bacilli, suggesting that MMPs indeed play a role in facilitating dissemination, likely via extracellular matrix degradation. The concentration of active MMP-9, specifically, was greater in the lungs of C57BL/6 mice than in those of the CBA/J mice at day 28, thereby suggesting that MMP-9 is not one of the MMPs directly involved in promoting early dissemination of M. tuberculosis. Instead, however, histological lung sections and flow cytometric analysis of lung cells from MMP-9-knockout mice showed that MMP-9 is involved in macrophage recruitment and granuloma development. These combined data support the idea that early MMP activity is an essential component of resistance to pulmonary mycobacterial infection and that MMP-9, specifically, is required for recruitment of macrophages and tissue remodeling to allow for the formation of tight, well-organized granulomas.


Assuntos
Granuloma/enzimologia , Metaloproteinase 9 da Matriz/fisiologia , Mycobacterium tuberculosis , Tuberculose Pulmonar/enzimologia , Tuberculose Pulmonar/patologia , Animais , Movimento Celular/imunologia , Feminino , Granuloma/microbiologia , Granuloma/patologia , Metaloproteinase 9 da Matriz/deficiência , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...